当前位置:论文写作 > 硕士论文 > 文章内容

植物论文范文 关于植物类论文范文检索8000字有关写作资料

主题:植物 下载地址:论文doc下载 原创作者:原创作者未知 评分:9.0分 更新时间: 2024-02-12

植物论文范文

《植物β半乳糖苷酶进展》

该文是关于植物开题报告范文和植物和β和半乳糖苷酶和进展方面开题报告范文.

摘 要植物β-半乳糖苷酶是一类糖苷水解酶,能够从β-D-半乳聚糖或寡聚糖支链非还原末端切除β-D-半乳糖残基.β-半乳糖苷酶广泛分布于各种植物中,通过对细胞壁的重塑参与植物生长发育过程.总结了植物β-半乳糖苷酶生化与分子生物学方面的最新研究进展,并就其结构域及催化机制、生化特性、亚细胞定位和表达模式、生理功能等方面展开详述.

关键词β-半乳糖苷酶;基因家族;生理功能;亚细胞定位

中图分类号Q946.5文献标识码A文章编号0517-6611(2020)01-0015-04

doi:10.3969/j.issn.0517-6611.2020.01.004

开放科学(资源服务)标识码(OSID):

Research Progress on Plant βGalactosidase

LI Junling,YAN Shuangyong,ZHANG Rongxue et al

(Tianjin Crop Research Institute, Tianjin Key Laboratory of Crop Genetics and Breeding, Tianjin 300384)

AbstractPlant βgalactosidase is a kind of glycoside hydrolase, which can remove terminal βDgalactose residues from the nonreducing end of βDgalactan or the branched side chain of oligosaccharide. It is widely distributed in various plants and participates in plant growth and development through remodeling cell walls. In this paper, the latest advances in biochemical and molecular biology of plant βgalactosidase were summarized. The structure domain, catalytic mechani, biochemical characteristics, subcellular localization and expression patterns, physiological functions and so on were described in detail.

Key wordsβgalactosidase;Gene family;Physiological function;Subcellular localization

β-半乳糖苷酶(β-galactosidases,BGALs)(EC3.2.1.23)是一類糖苷水解酶(glycoside hydrolases,GHs),能够从β-D-半乳聚糖或寡聚糖支链非还原末端切除β-D-半乳糖残基,广泛分布于植物、动物和微生物中.GH1、GH2、GH3、GH35、GH42、GH50和GH59水解酶家族中都发现了具有BGALs水解酶活性的成员,其中所有的植物源BGALs属于GH35家族[1].

BGALs在生物体内起着重要作用.例如,人类GH35家族的GLB1基因参与消除溶酶体中神经节苷脂末端半乳糖残基,GLB1缺失导致毒性神经节苷脂积累进而引起神经节苷脂沉积症[2];人类GH59家族的GALC基因参与消除半乳糖神经酰胺半乳糖残基,基因缺陷后将导致Krabbe疾病[3];分子生物学中常用的大肠杆菌LacZ基因编码GH2家族BGAL,是细菌在葡萄糖饥饿条件下乳糖代谢所必需的[4].植物源BGALs属于多基因家族,是一类与细胞壁多糖代谢相关的酶,从各种植物中分离得到的BGALs表明其参与多种生理过程,如种子萌发、花粉发育、果实成熟等.极少部分植物BGALs基因已被克隆并进行了功能鉴定,如拟南芥AtBGAL6和AtBGAL10基因失活分别导致种子黏液释放减少和荚果萼片变短[5-6];番茄TBG4的下调导致果实硬度增加等[7];但绝大多数植物BGALs在发育中的生理功能尚未明确.笔者总结了目前植物BGALs在细胞与分子生物学方面的最新研究进展,并就结构域及催化机制、生化特性、亚细胞定位和表达模式、生理功能等方面展开详述,同时,从水稻中克隆了OsBGAL1和OsBGAL6这2个基因,并分别构建了其过表达和基因敲除转基因株系,为后续生理功能研究提供了生物材料.

1植物BGALs家族、结构域及其催化机制

所有的植物BGALs基因都属于GH35家族,是多基因家族,不同植物含有不同数目BGALs基因.拟南芥(Arabidopsis thaliana)基因组含有17个BGALs基因[8];番茄(Lycopersicon esculentum Mill.)基因组含中有17个BGALs基因[9];水稻(Oryza sativa)基因组含中有15个BGALs基因[10];其他植物如日本梨(Pyrus pyrifolia)[11]、油菜(Brassica campestris ssp.chinensis)[12]、桃(Prunus persica(L.)Batsch)[13]、亚麻(Linum usitatissimum)[14]、苹果(Malus pumila)[15]中分别含有8、16、17、43、13个BGALs基因成员.

6植物BGALs未来研究方向

关于植物BGALs的生物学和生化作用研究方興未艾,主要有以下几个主要问题有待解决:首先,除了GH35保守序列和信号肽,BGALs中其他结构域的功能是什么?如前人研究表明一个水稻BGAL1(LOC_Os03g06940)的凝集素结构域有凝集素活性,可能与BGALs底物特异性识别有关[53].目前“结构-功能”关系的分子调控研究滞后,如何将已有的酶学数据与分子结构和功能信息结合,深入研究催化机理和调控机制是BGALs研究领域的探索方向之一.第二是BGALs时空表达问题.作为一个大的基因家族,要明确每个BGAL的生化功能首先需要对BGAL进行纯化,而某些BGALs难以纯化;而且可能存在功能冗余,导致明确其生理功能存在一定难度,如拟南芥AtBGAL1、AtBGAL2、AtBGAL3、AtBGAL4、AtBGAL5、AtBGAL12这6个基因单基因敲除后,其突变体没有明显的表型变化[54],但bgal1/bgal3双突变体则表现出花序茎和下胚轴变短等.第三,BGALs的天然底物是什么,释放的β-半乳糖去向哪里?半乳聚糖、糖脂和蛋白多糖中都存在β-D-半乳糖残基,细胞壁结构复杂且是动态变化的,那么植物各种生理过程中BGALs的具体底物会差异显著.而BGALs水解释放的半乳糖残基可能有3种去向:①作为能量来源;②作为底物用于构建新的糖缀合物;③作为信号分子启动信号级联反应.在植物中,糖分子如葡萄糖和蔗糖既可作为能源,也可作为信号分子.葡萄糖在细胞凋亡和器官发育过程中起着重要作用[55];蔗糖可作为信号分子调控果聚糖和花青素的生物合成[56].那么乳糖能否作为信号分子将是一个新的研究方向.

参考文献

[1] LOMBARD V,GOLACONDA R H,DRULA E,et al.The carbohydrateactive enzymes database(CAZy)in 2013[J].Nucleic Acids Res,2014,42:490-495.

[2] OHTO U,USUI K,OCHI T,et al.Crystal structure of human βgalactosidase:Structural basis of Gm1 gangliosidosis and morquio B diseases[J].J Biol Chem,2012,287(3):1801-1812.

[3] DEANE J E,GRAHAM S C,KIM N N,et al.Insights into Krabbe disease from structures of galactocerebrosidase[J].Proc Natl Acad Sci USA,2011,108(37):15169-15173.

[4] JUERS D H,MATTHEWS B W,HUBER R E.LacZ βgalactosidase:Structure and function of an enzyme of historical and molecular biological importance[J].Protein Sci,2012,21(12):1792-1807.

[5] DEAN G H,ZHENG H Q,TEWARI J,et al.The Arabidopsis MUM2 gene encodes a βgalactosidase required for the production of seed coat mucilage with correct hydration properties[J].Plant Cell,2007,19(12):4007-4021.

[6] SAMPEDRO J,GIANZO C,IGLESIAS N,et al.AtBGAL10 is the main xyloglucan βgalactosidase in Arabidopsis,and its absence results in unusual xyloglucan subunits and growth defects[J].Plant Physiol,2012,158(3):1146-1157.

[7] ITH D L,ABBOTT J A,GROSS K C.Downregulation of tomato βgalactosidase 4 results in decreased fruit softening[J].Plant Physiol,2002,129(4):1755-1762.

[8] AHN Y O,ZHENG M Y,BEVAN D R,et al.Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 35[J].Phytochemistry,2007,68(11):1510-1520.

[9] CHANDRASEKAR B,VAN DER HOORN R A.Beta galactosidases in Arabidopsis and tomatoA mini review[J].Biochem Soc Trans,2016,44(1):150-158.

[10] TANTHANUCH W,CHANTARANGSEE M,MANEESAN J,et al.Genomic and expression analysis of glycosyl hydrolase family 35 genes from rice(Oryza sativa L.)[J].BMC Plant Biol,2008,8:1-17.

[11] TATEISHI A,NAGASHIMA K,MATHOOKO F M,et al.Differential expression of members of the βgalactosidase gene family during Japanese Pear(Pyrus pyrifolia L.)fruit growth and ontree Ripening[J].J Amer Soc Hort Sci,2005,130(6):819-829.

[12] LIU J L,GAO M H,LV M L,et al.Structure,evolution,and expression of the βgalactosidase gene family in Brassica campestris ssp.chinensis[J].Plant molecular biology reporter,2013,31(6):1249-1260.

[13] GUO S L,SONG J,ZHANG B B,et al.Genomewide identification and expression analysis of βgalactosidase family members during fruit softening of peach[Prunus persica(L.)Batsch][J].Postharvest biology & technology,2018,136:111-123.

[14] HOBSON N,DEYHOLOS M K.Genomic and expression analysis of the flax(Linum usitatissimum)family of glycosyl hydrolase 35 genes[J].BMC Genomics,2013,14:1-14.

[15] YANG H J,LIU J L,DANG M L,et al.Analysis of βgalactosidase during fruit development and ripening in two different texture types of apple cultivars[J].Front Plant Sci,2018,9:1-13.

[16] ROJAS A L,NAGEM R A P,NEUSTROEV K N,et al.Crystal structures of βgalactosidase from Penicillium sp.and its complex with galactose[J].J Mol Biol,2004,343(5):1281-1292.

[17] SIEBERTZ M,HEINZ E.Galactosylation of different monogalactosyldiacylglycerols by cellfree preparations from pea lees[J].Hoppe Seylers Z Physiol Chem,1977,358(1):27-34.

[18] SHOWALTER A M.Arabinogalactanproteins:Structure,expression and function[J].Cell Mol Life Sci,2001,58(10):1399-1417.

[19] YAPO B M.RhamnogalacturonanI:A structurally puzzling and functionally versatile polysaccharide from plant cell walls and mucilages[J].Polymer reviews,2011,51(4):391-413.

[20] 董藝凝,陈海琴,张灏,等.β-半乳糖苷酶的研究现状与进展[J].食品与生物技术学报,2018,37(4):337-343.

[21] DWEVEDI A,KAYASTHA A M.Plant βgalactosidases:Physiological significance and recent advances in technological applications[J].Journal of plant biochemistry and biotechnology,2010,19(1):9-20.

[22] GANTULGA D,AHN Y O,ZHOU C H,et al.Comparative characterization of the Arabidopsis subfamily a1 βgalactosidases[J].Phytochemistry,2009,70(17/18):1999-2009.

[23] GANTULGA D,TURAN Y,BEVAN D R,et al.The Arabidopsis At1g45130 and At3g52840 genes encode βgalactosidases with activity toward cell wall polysaccharides[J].Phytochemistry,2008,69(8):1661-1670.

[24] WEI H,BRUNECKY R,DONOHOE B S,et al.Identifying the ionically bound cell wall and intracellular glycoside hydrolases in late growth stage Arabidopsis stems:Implications for the genetic engineering of bioenergy crops[J].Front Plant Sci,2015,6:1-14.

[25] EDA M,ISHIMARU M,TADA T,et al.Enzymatic activity and substrate specificity of the recombinant tomato βgalactosidase 1[J].J Plant Physiol,2014,171(16):1454-1460.

[26] ISHIMARU M,ITH D L,MORT A J,et al.Enzymatic activity and substrate specificity of recombinant tomato βgalactosidases 4 and 5[J].Planta,2009,229(2):447-456.

[27] MOCTEZUMA E,ITH D L,GROSS K C.Antisense suppression of a βgalactosidase gene(TBG6)in tomato increases fruit cracking[J].J Exp Bot,2003,54(390):2025-2033.

[28] TRAINOTTI L,SPINELLO R,PIOVAN A,et al.βGalactosidases with a lectinlike domain are expressed in strawberry[J].J Exp Bot,2001,52(361):1635-1645.

[29] PANIAGUA C,BLANCOPORTALES R,BARCELOMUNOZ M,et al.Antisense downregulation of the strawberry βgalactosidase gene FaβGal4 increases cell wall galactose levels and reduces fruit softening[J].J Exp Bot,2016,67(3):619-631.

[30] OGASAWARA S,ABE K,N*AJIMA T.Pepper βgalactosidase 1(PBG1)plays a significant role in fruit ripening in bell pepper(Capsicum annuum)[J].Biosci Biotechnol Biochem,2007,71(2):309-322.

[31] ROSS G S,WEGRZYN T,MACRAE E A,et al.Apple βgalactosidase.Activity against cell wall polysaccharides and characterization of a related cDNA clone[J].Plant Physiol,1994,106(2):521-528.

[32] KOT*E T,DINA S,KONISHI T,et al.Molecular cloning of a βgalactosidase from radish that specifically hydrolyzes β(13)and β(16)galactosyl residues of arabinogalactan protein[J].Plant Physiol,2005,138(3):1563-1576.

[33] CHANTARANGSEE M,TANTHANUCH W,FUJIMURA T,et al.Molecular characterization of βgalactosidases from germinating rice(Oryza sativa)[J].Plant science,2007,173(2):118-134.

[34] ALI Z M,ARMUGAM S,LAZAN H.βGalactosidase and its significance in ripening mango fruit[J].Phytochemistry,1995,38(5):1109-1114.

[35] ZHUANG J P,SU J,LI X P,et al.Cloning and expression analysis of βgalactosidase gene related to softening of banana(Musa sp.)fruit[J].Journal of plant physiology and molecular biology,2006,32(4):411-419.

[36] GERARDI C,BLANDO F,SANTINO A.Purification and chemical characterisation of a cell wallassociated βgalactosidase from mature sweet cherry(Prunus ium L.)fruit[J].Plant Physiol Biochem,2012,61:123-130.

[37] BALASUBRAMANIAM S,LEE H C,LAZAN H,et al.Purification and properties of a βgalactosidase from carambola fruit with significant activity towards cell wall polysaccharides[J].Phytochemistry,2005,66(2):153-163.

[38] BAN Q Y,HAN Y,HE Y H,et al.Functional characterization of persimmon βgalactosidase gene DkGAL1 in tomato reveals cell wall modification related to fruit ripening and radicle elongation[J].Plant Sci,2018,274:109-120.

[39] KISHORE D,KAYASTHA A M.A βgalactosidase from chick pea(Cicer arietinum)seeds:Its purification,biochemical properties and industrial applications[J].Food Chem,2012,134(2):1113-1122.

[40] DWEVEDI A,KAYASTHA A M.A βgalactosidase from pea seeds(PsBGAL):Purification,stabilization,catalytic energetics,conformational heterogeneity,and its significance[J].J Agric Food Chem,2009,57(15):7086-7096.

[41] BISWAS S,KAYASTHA A M,SECKLER R.Purification and characterization of a thermostable βgalactosidase from kidney beans(Phaseolus vulgaris L.)cv.PDR14[J].J Plant Physiol,2003,160(4):327-337.

[42] HOFTE H,VOXEUR A.Plant cell walls[J].Curr Biol,2017,27(17):865-870.

[43] COSGROVE D J.Plant cell wall extensibility:Connecting plant cell growth with cell wall structure,mechanics,and the action of wallmodifying enzymes[J].J Exp Bot,2016,67(2):463-476.

[44] O’DONOGHUE E M,SOMERFIELD S D,DEROLES S C,et al.Simultaneous knockdown of six βgalactosidase genes in petunia petals prevents loss of pectic galactan but decreases petal strength[J].Plant Physiol Biochem,2017,113:208-221.

[45] MONEOSANCHEZ M,ALONSOCHICO A,KNOX J P,et al.β(1,4)Galactan remodelling in Arabidopsis cell walls affects the xyloglucan structure during elongation[J].Planta,2019,249(2):351-362.

[46] LIU H K,QIAN M,SONG C H,et al.Downregulation of PpBGAL10 and PpBGAL16 delays fruit softening in peach by reducing polygalacturonase and pectin methylesterase activity[J].Front Plant Sci,2018,9:1-11.

[47] IZQUIERDO L,MARTIN I,ALBORNOS L,et al.Overexpression of Cicer arietinum βIIIGal but not βIVGal in Arabidopsis causes a reduction of cell wall β(1,4)galactan compensated by an increase in homogalacturonan[J].J Plant Physiol,2018,231:135-146.

[48] SUN J J,YAO C Y,WANG W,et al.Cloning,expression and characterization of a novel coldadapted βgalactosidase from the deepsea Bacterium Alteromonas sp.ML52[J].Mar Drugs,2018,16(12):1-13.

[49] CHEN W,CHEN H,XIA Y,et al.Production,purification,and characterization of a potential thermostable galactosidase for milk lactose hydrolysis from Bacillus stearothermophilus[J].J Dairy Sci,2008,91(5):1751-1758.

[50] ESKANDARLOO H,ABBASPOURRAD A.Production of galactooligosaccharides from whey permeate using βgalactosidase immobilized on functionalized glass beads[J].Food Chem,2018,251:115-124.

[51] DWEVEDI A,KAYASTHA A M.Optimal immobilization of βgalactosidase from Pea(PsBGAL)onto Sephadex and chitosan beads using response surface methodology and its applications[J].Bioresource technology,2009,100(10):2667-2675.

[52] KISHORE D,KAYASTHA A M.Optimisation of immobilisation conditions for chick pea βgalactosidase(CpGAL)to alkylamine glass using response surface methodology and its applications in lactose hydrolysis[J].Food Chem,2012,134(3):1650-1657.

[53] JIANG S Y,MA Z G,RAMACHANDRAN S.Evolutionary history and stress regulation of the lectin superfamily in higher plants[J].BMC Evol Biol,2010,10:1-24.

[54] MONEOSNCHEZ M,IZQUIERDO L,MARTN I,et al.Knockout mutants of Arabidopsis thaliana βgalactosidase.modifications in the cell wall saccharides and enzymatic activities[J].Biol Plantarum,2018,62(1):80-88.

[55] WINGLER A,MASCLAUXDAUBRESSE C,FISCHER A M.Sugars,senescence,and ageing in plants and heterotrophic organis[J].J Exp Bot,2009,60(4):1063-1066.

[56] TOGNETTI J A,PONTIS H G,MARTNEZNOL G M.Sucrose signaling in plants:A world yet to be explored[J].Plant Signal Beh,2013,8(3):1-10.

汇总,上文是一篇关于对不知道怎么写植物和β和半乳糖苷酶和进展论文范文课题研究的大学硕士、植物本科毕业论文植物论文开题报告范文和文献综述及职称论文的作为参考文献资料.

植物引用文献:

[1] 植物科学毕业论文题目大全 植物科学论文题目选什么比较好
[2] 植物营养学类论文选题 植物营养学论文题目选什么比较好
[3] 植物与环境保护论文题目推荐 植物与环境保护毕业论文题目如何定
《植物论文范文 关于植物类论文范文检索8000字》word下载【免费】
植物相关论文范文资料